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Monte Carlo simulations of short-time critical dynamics with a conserved quantity
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With Monte Carlo simulations, we investigate short-time critical dynamics of the three-dimensional antifer-
romagnetic Ising model with a globally conserved magnetizatigfnot the order parametefrom the power
law behavior of the staggered magnetizafjtite order parametgrits second moment and the autocorrelation,
we determine all static and dynamic critical exponents as well as the critical temperature. The universality class
of mg=0 is the same as that without a conserved quantity, but the universality class of nongisifferent.
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. INTRODUCTION interactions, sometimes. is negligibly small (e.g., one
Monte Carlo time step or twoCompared with typical mac-
About ten years ago, in a pioneering work by Janssensoscopic time scales characterized by or L? around the
Schaub, and Schmittmann, short-time universal scaling beeritical point, t,, is indeed very small.
havior of nonequilibrium critical dynamics starting from a  The physical origin of the short-time dynamic scaling is
high-temperature state was systematically explored witlthe divergent correlation time near a critical point. The di-
renormalization group methodl$]. In a few years, extension vergent correlation time induces a memory effect, and the
of the calculations to different critical dynamics was carriedmemory effect can be described by a scaling form. What
out by Oerding and Janssen in a series of wpksd]. Some  does this scaling form look similar to? As pointed out by
evidences for the short-time dynamic scaling were also obJdanssen, Schaub, and Schmittmghl one should introduce
served in Monte Carlo simulatiof§—7]. Meanwhile, it was new critical exponents to describe the dependence of the
found that the power law decay of the magnetization startingcaling behavior on the macroscopic initial conditions. Actu-
from a completely ordered state has already emerged at relally, for arbitrary initial conditions even a characteristic
tively early times, e.g., see Rdi8], and it can be used to function is needefi32,33. Furthermore, to describe the scal-
estimate the dynamic exponemt[9,10]. In recent years ing behavior of some special dynamic observables, we also
short-time critical dynamics has been systematically investihave to introduce new exponents, for example, the persis-
gated with Monte Carlo simulationgl1-15. Simulations tence exponert34,35.
have extended from regular classical spin mofielis16—19 The short-time dynamic scaling form is not only concep-
to statistical systems with quenched disord20—22, quan-  tually interesting but also practically important. It provides
tum spin system§23], lattice gauge theorig4], the hard- new techniques for the measurements of both dynamic and
disk model[25,26], and dynamic systems without detailed static critical exponents as well as the critical temperature,
balancd 27-31]. The references given here are only a part offor a review, see Ref14]. Since the measurements are car-
recent ones and not complete. A relatively complete list ofried out in the short-time regime of dynamic evolution, the
the relevant references before 1998 can be found in a recedlynamic approach does not suffer from critical slowing
review, Ref.[14]. All numerical and analytical results con- down! Averaging is over both initial configurations and the
firm that there exists a rather general dynamic scaling formfandom forces. This is very different from the time averaging
in critical dynamic systems already in the short-time regimen the measurements in equilibrium. Compared with those
of dynamic evolution. nonlocal methods which were invented to overcome the criti-
Traditionally, it is believed that the short-time behavior of cal slowing down in Monte Carlo simulations in equilibrium,
dynamic systems depends essentially on microscopic details.g., the cluster algorithms, the dynamic approach does study
To understand short-time universal behavior, one should dighe original local dynamics and can be applied to disordered
tinguish two different time scales, the macroscopic and misystems.
croscopic time scales. The short-time dynamic scaling form
emerges only after a time scalg;,., which is sufficiently

large in microscopic sense, but still very small in macro- 1y, e jiterature, sometimes it is stated that the short-time dy-
scopic sensétpc is a time that the system needs to sweepnamic approach caeliminate critical slowing down. Rigorously
away the effect of microscopic details. In Monte Carlo simu-gpeaking, this statement is not correct. Critical slowing down al-
lations, for example, if a sweep over all spins on a lattice isyays exists, at least for local dynamics, and it is the physical origin
considered to be a microscopic time unjf; is usually the  of the dynamic scaling. But in the short-time dynamic approach we
order of 10 to 100 Monte Carlo time steps4]. For the do not have the problem of generating independent configurations.
simple Ising and Potts models with only nearest neighbofherefore, we do not suffer from critical slowing down.
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In fact, the dynamic scaling in nonequilibrium critical dy- tization. We will denote the magnetization Imgs and the
namics is not an exclusive phenomenon in the world. Instaggered magnetization By (t). For equilibrium states, it
many other nonequilibrium dynamic processes, universal ok expected that foms=0, the universality class is the same
quasiuniversal scaling behavior has also been observed. Agx that of the standard Ising model without a conserved mag-
example is phase ordering dynami@$]. In this case, a real npetization. For a nonzera, according to Ref[41], the

equilibrium state and a macroscopic time scale SUCR S yitical exponents is different from that ofms=0.0, but it
does not exist. Therefore, “short-time” is not addressed. ANn-4oes not depend on the value of the nonzeto For critical

other example is aging in complex systems such as glass%l?/namics, the dynamic exponentand the exponend for

and_spm glasse_zs. Agl_ng IS Just a kind of scah_ng or quas"ms=0 are the same as those of the standard Ising model, but
scaling. Dynamic scaling behavior around a spin glass tranf-or nonzerom. they are different. Aaainz and @ do not
sition [5,37—-39,2] is very similar to that around a standard s they - Againg

critical point. For example, the experimental measurementgepznd onfthe value of It_het_nonzemg. Thlesf Eonclgsmn;
of the remanent magnetization in spin glasses support ndl'€ drawn irom renormalization group calculations based on

4 : :
only the power law scaling behavior but also the scalingth® ¢ theory coupling to a conserved curredt,2]. It is

relations between the exponefit®,21]. intfaresting to compare these results with Monte Carlo simu-
After such a slightly lengthy review, we come to what we lations.
are going to do in this paper. Even though renormalization In this paper we study only dynamic relaxation starting
group calculations have been extended to different criticaffom disorderedstates with a zero or small initial staggered
dynamics, up to now, Monte Carlo simulations have beermagnetizatiorm,. We measure how the staggered magneti-
limited to dynamics of model A41]. Actually, due to severe zation and its second moment as well as the autocorrelation
critical slowing down, Monte Carlo simulations for long- evolve in the dynamic process. The heat-bath algorithm is
time behavior of critical dynamics beyond model A are alsoused in simulations. In order to keep, as a constant, in a
in the preliminary stage. The short-time dynamic approactilip we simply exchange the values tfo spins. Here we
provides powerful methods for numerical measurements o$hould point out that if our model is not the antiferromag-
not only dynamic exponents, but also static exponents agetic but the ferromagnetic Ising model, tiieonserveg
well as the critical temperature. Simulations of dynamic sys+magnetizationm, is the order parameter and then the dynam-
tems beyond model A in equilibrium are usually difficult. ics formg=0 belongs to model B41].
Therefore, it is important to investigate short-time scaling In dynamics without any relevant conserved quantities,
behavior of these dynamic systems with Monte Carlo methi.e., dynamics of model A, updating schemes are irrelevant in
ods. the sense of universality. Different updating schemes lead to
Dynamics of model A is a kind of relaxational dynamics the same critical exponents, either in an equilibrium or a
without relevant conserved quantiti¢d1]. If we consider nonequilibrium state. However, for dynamics with relevant
only dynamicrelaxational processes, dynamics with differ- conserved quantities, it is different, at least for nonequilib-
ent relevant conserved quantities is classified into model Bjium short-time behavior. In a recent work by one of the
C, and D. In this paper, taking the three-dimensional antiferauthors[42], for example, the Monte Carlo dynamics with a
romagnetic Ising model as an example with Monte Carloconserved order parameter for the two-dimensional Ising
methods, we study dynamiosith a conserved quantity model is investigated. It is found that if in a flip we exchange
which is not an order parameter but coupling to the orderthe values of twoneighboringspins, the dynamics is very
parameter. According to Ref41], this is called model C. In slow. However, if we release the condition such that the
the next section, we introduce the model and analyze therder parameter is not locally conserved but only globally
power law scaling behavior in the short-time regime. In Secconservedfor example, in a flip we exchange the values of
I, we present the numerical results. Section IV contains théwo randomly separated spinsthe dynamic exponent is

concluding remarks. much smaller. For the dynamics studied in this paper, i.e.,
with a conserved quantity which is not the order parameter,

Il. SHORT-TIME DYNAMIC SCALING the situation is so_mewhgt sim!lar. Ifina fI.ip we exphange the

values of two neighboring spins, dynamic evolution is rela-
A. The model tively slow. Therefore, as a first approach we decided to keep

We consider an antiferromagnetic Ising model on a threethe magnetizatioms only globally conserved. In a flip we

dimensional cubic lattice. The Hamiltonian of the model is €xchange the values of two randomly separated spins. Except
for the updating schemes, all computational techniques

adopted here are the same as those in the simulations of
—H/kT= _K% SiS; D model A[14].

whereS; is an Ising spin and the sum is over nearest neigh-
bors. For dynamics of model A and in equilibrium, on a
cubic lattice the antiferromagnetic Ising model is equivalent For critical dynamic systems, traditionally it is believed
to the (ferromagnetit Ising model. Now, we keep the mag- that universal scaling behavior exists only in the long-time
netization as a constant in dynamic evolution. Here the orderegime of dynamic evolution. However, in recent years it is
parameter isot the magnetization but the staggered magnediscovered that starting frommacroscopidnitial states, uni-

B. Short-time dynamic scaling
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versal scaling behavior emerges already in the macroscopic Taking into account that the nonequilibrium spatial corre-
short-time regime of dynamic processes after a microscopitation length (t%) is small at the initial stage of time evo-
time scalet,,; [1,5,6,11,12,14 A typical example is that a lution, from Eq.(2) it can be derived that the second moment
magnetic system initially in a high-temperature state with aat T, subjects to a finite size scaling
smallinitial order parametem,, is suddenly quenched to the
critical temperaturd . or nearby(without external magnetic M®(t,L)~L %Y, y=(d—2B8/v)/z (5)
field) and then released to dynamic evolution of model A
[41]. A generalized dynamic scaling form can be written For simplicity, here we have set,=0. Another interesting
down, for example, for th&th moment of the order param- dynamic observable is the autocorrelation
eter

M(k)(t,r,L,mO)=b‘kB’”M(k)(b‘zt,bl’”r,b‘lL,bXOmo).(Z) A(t)z$< > Si(O)Si(t)>. (6)

I

Heret is the time variabler is the reduced temperature, and At the critical temperatur@ ., A(t) decays by a power law
L is the lattice size3 and v are standard static exponents [43]
and z is the dynamic exponent. It is important that a new
independent exponenry is introduced to describe the scaling
behavior of the initial order parameten,. If the scaling
form above is valid, all relevant exponents can be extracted
from the short-time behavior of relevant observables. It is interesting that even though we have sgt=0, 6 (i.e.,

For the dynamic system with a conserved quantity disx,) still enters the autocorrelation. This is becavgés ac-
cussed in the last subsection, we assume that a scaling formally the scaling dimension of tHecal order parameter.
such as Eq(2) also holds. In this case:=(K—K_)/K; and From Egs.(5) and(7), we are able to estimate the static
K. depends on the conserved magnetizatiqn i.e., there is exponent3/v and the dynamic exponemt Then we com-
a critical lineK,=K.(ms). In principle, there are two possi- plete the measurements of all the exponents and the critical
bilities for the critical exponents. In the case of strong uni-temperature. For details of the above scaling analysis and a
versality, the value of an exponent for nonzeng can be more systematic extension, readers are referred to Refs.
different from that for zerang, but does not depend on the [1,43] and the recent review article R¢fL4].
value of the nonzermg. In the case of weak universality, an
exponent may vary its value continuously along a critical
line. For the¢* theory coupling to a conserved current in
Ref.[41], it is the case of strong universality. A. mg=0

Neglecting the finite size effect and noting thap is For the antiferromagnetic Ising model, in equilibrium the
small, we expand the right hand side of £2).and take only  5\eraged magnetization is zero. If we notice that the order

the first n_op_zeroilinear) te_rm under the condition of a small parameter is the staggered magnetization, the thermody-
L. At the initial stage of time evolution, the staggered mag-pamic fluctuation of the magnetization goes to zero in the
netization around the critical temperature behaves as thermodynamic limit(infinite volume. In nonequilibrium

dynamic processes without any conserved quantities, if one

M(t,7,mo)~mot’F(t"?7), 0=(xo—BIv)Iz. (3)  starts from initial states with a zero magnetizatiog, the

magnetization will remain zero. This is the case for usual
At the exact critical pointr=0, M(t) obeys a power law macroscopic initial states, e.g., the high-temperature and
~t’. Numerical results and analytical calculations have rejow-temperature states. The fluctuation of the magnetization
vealed that the expone#tis positive for almost all systems, in the dynamic processes is also zero in thermodynamic
i.e., the order parameter undergaasinitial increase This  limit. Therefore, one expects that the equilibrium state of the
makes the short-time behavior very prominent. The physicatlynamic process with a conserved magnetizatigi: 0 is in
mechanism for this increase has not been very clear. At least same universality class of the model without a conserved
the mean-field effect or symmetry breaking is not very rel-quantity, and so is the dynamic universality class as well.
evant. Slightly away from the critical point, the power law The critical temperature is also not changed.

d
A(t)~t™*, >\=E—.9. 7

Ill. MONTE CARLO SIMULATIONS

behavior is modified by the scaling functiéi(t'”?7). This We perform simulations foms=0 in order to confirm the
fact allows us to locate the critical temperature and meanabove expectation and to demonstrate our computational
while to measure the critical exponefit techniques. The heat-bath algorithm is adopted in simula-
Differentiation of Eq.(3) leads to tions since it is faster than the Metropolis algorithm in the
short-time regime. Lattice sizes ake=64 and 128. Within
3,M(t,7,mg)| ,—o=Motd . F(7')|, g, Cyq=1lvz+8. our maximum updating times, no finite size effects are ob-

(4) served. We remind the readers here that it is an advantage of
the short-time dynamic approach that the finite size effects
From this power law behavior, one can determine the criticalre easily controlled due to the small nonequilibrium spatial
exponent 1/z. correlation length €t%?).
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FIG. 1. Time evolution of the staggered magnetization displayed ) o
in log-log scale. For solid lines is 0.22065, 0.22165, and 0.22265  FIG. 2. The second moment in log-log scale. For solid lires,
(from below for my=0.01, andK is 0.22115, 0.22165, and IS 0.22065, 0.22165, and 0.2226%0om below). The dashed line

0.22215 for my=0.02. Dashed lines correspond t&,  corresponds t& =0.22164(22).

=0.22169(9 d 0.22163(5) fony,=0.01 andmy=0.02. . . .
(9) an (5) fono andmo =0.108(2) in Ref[46] for the Ising model without a con-

The critical temperature has been measured rather accaerved quantity. Rigorously speaking, the expongig de-
rately in simulations in equilibriungfor the system without a fined in the limit ofmy=0. We should extrapolaté to mg
conserved quantijy However, we also present data to deter-=0. However, since here there are some statistical errors,
mine it from short-time dynamics. With the short-time dy- and especially the errors induced by the errors of the critical
namic approach, in principle, any observables which are serpointK.'s, it is not meaningful to do so. To reduce the errors
sitive to the temperature around the critical regime can bénduced byK., we could takeK.=0.22165 as input. Then
used for the determination of the critical temperature. we obtain #=0.106(6) by extrapolating the results oy

In Fig. 1, time evolution of the staggered magnetization=0. In this paper, we simply considet=0.108(5) mea-
M(t) is displayed with solid lines in log-log scale. The lat- sured frommy=0.01 as our final value of.
tice size isL =128 and 2500 samples of initial configurations  In Fig. 2, time evolution of the second moment of the
have been used for averaging. In order to see the possibitaggered magnetization is displayed with solid lines in log-
“finite my effects,” we have performed the simulations with log scale. Here the initial staggered magnetization has
mp=0.01 and 0.02. The coupling constalktis 0.22065, been set to zero. From below=0.22065, 0.22165, and
0.22165, and 0.2226%from below for my=0.01, and 0.22265. The lattice size Is=64 and the number of samples
0.22115, 0.22165, and 0.22215 for,=0.02. In principle, for averaging is 3200. Extra simulations for=128 show
the closeK’s are used, the more accurd€e and the critical  that the finite size effect fo. =64 is already negligibly
exponent ¥z can be obtained. However, we suffer from small. From the figure, we see that the second moment is
large statistical fluctuation if th&’s are too close to each apparently less sensitive , compared with the staggered
other. We use differer’s for my=0.01 andmy=0.02 just magnetization itself. However, we still can locate the critical
to study the possible systematic errors. K. from the data. Measuring in a time intervat, .

To make use of Eq3) to locate the critical point, we first =20,700, K =0.22164(22). The curve corresponding to
interpolate M (t) quadratically to anyK around the three K. is shown by a dashed line in the figure. The erroKef
simulated ones, then search forkawhich gives the best here is bigger than that from the staggered magnetization. To
power law behavior for the curve. This is K.. The two  reduce the error, simply increasing the samples for averaging
dashed lines in Fig. 1 are the curves with the best power lais not enough, one must have longer maximum updating
behavior formy=0.01 andmy=0.02. The corresponding times and therefore larger lattices. These need much CPU
K. 's areK.=0.22169(9) and 0.22163(5) fong=0.01 and times since the second moment is not self-averaging. To es-
me=0.02, respectively. These two values are consistent withimate the exponent=(d—2p/v)/z, for simplicity, we take
each other and in agreement with that of the Ising modeK.=0.22165 as input. The result ys=0.965(11).
measured in equilibriunfwithout any conserved quantjty In the simulations for Fig. 2, we have also measured the
which is reported to be around 0.221[6B!,45. We perform  autocorrelation functiod\(t). The results are shown in Fig.
our measurements in a time intervya},;,400]. The results 3. From belowK=0.22065, 0.22165, and 0.22265. It is im-
are rather stable when we takg. bigger than 10. possible to locate the critical point from the autocorrelation.

With K. in hand, we measure the critical exponght We measure the exponent=1.36(3) atk,=0.22165 in a
=0.108(5) and 0.100(5) fany=0.01 andmy=0.02. They time interval[20,100. Whent is bigger than 100, the fluc-
are consistent with#=0.104(3) in Ref.[13] and # tuation becomes large.
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FIG. 3. The autocorrelation in log-log scalk. is 0.22065, o . )
0.22165, and 0.22266rom below. _ FIG. 4. The derivatived, M(t,7)|,—o in log-log scale. Solid
lines are formg=0.0 and from belowmy=0.01 and 0.02. Dashed

. o lines are formg=0.2 and 0.4(from above¢ with my=0.01.
In order to determine the critical exponent we need s A ¢ 0

d,M(t,7)|,—o. From the data for Fig. 1, we can calculate

this derivative approximately. The results are shown in Fig. 4aO ner(;giﬁo&l; :ftuégznb?ns;ggoxrfg:htgf rsegzg_n“rigetﬁgtn%mtﬁe
with solid lines in log-log scale. From below, the initial stag- pp '

gered magnetization isy=0.01 and 0.02. It is known that sho_rt-tlme dynam|_c approach we have to measure both the
the power law behavior of the derivative bf(t) in shorter static anq dynamic exponents together. It mgkes the work
times is less clean than that bf(t) itself [14]. Therefore, more d|ff|(?,ullt than measuring only the static exponents.
we measure the slopes in a time interi/a,400 and obtain Howevgr, it is c!ear if we are '|nterested in both static and
Cy=1/vz+ 6=0.867(10) and 0.901(22) fomy=0.01 and dyna_lmlc properties, the short—tlme dynamic approach is very
0.02, respectively. The value fromg=0.01 is more reliable. eff|C|en_t. Th_e clustt_ar algorithms are nonlocal and change the
In’ Table 1, we list all the exponents we have measureddynamlc universality cl_ass. On the other hand, the cluster
Taking the éxponen g as input, from\ we estimate the algorithms cannot str_a|ghtforwardly apply to any systems,
dynamic exponenz. Then fromy andc, we calculate the e.g., the systems with quenched randomness and lattice

exponents B/v andv. For comparison, available results for gauge theories.
dynamics without a conserved quantit¢6], i.e., the so-

called model A dynamics, are also given, where the critical

point K. and the exponent are measured from another dy-  Encouraged by the success fog=0.0, we proceed to
namic process starting from a completely ordered statens# 0. The results in the last subsection show that the lat-
Within statistical errors, all the exponents for dynamics withtices sizesL =64 and 128 are sufficient for our maximum
and without a conserved quantity agree with each other wellupdating times. The finiten, effect formy=0.01 is already
The static exponents ari€}, are also consistent with those of invisible within the statistical errors. Therefore, in this sub-
the standard Ising model measured from simulations in equisection we will not systematically study the finite size and
librium with cluster algorithm$45]. Here we should make a finite m, effects. However we have also performed some
comment. Even for dynamics of model A, the static expo-extra calculations to confirm the results presented. To locate
nents and . measured from the short-time dynamics are stillthe critical pointK. and estimate the exponent we need

not as accurate as those obtained with the cluster algorithmdata for severaK’s in the neighborhood of the critical point.

B. mg#¥0

TABLE I. Critical exponents measured for different conserved magnetizatiom The values for dy-
namics of model A are taken from Ré#6]. Under the item "Ising” are the values for the standard Ising
model in equilibrium[45].

ms K¢ 0 A y (o z 2B1lv v
0.0 0.2216%9) 0.1085) 1.363) 0.96511) 0.864100 2.044) 1.034) 0.642
0.2 0.2415812) 0.1295) 1.342) 0.9544) 0.72570) 2.043) 1.053) 0.828)
0.4 0.3323(R0) 0.1484) 1.31(1) 0.9458) 0.74820) 2.062) 1.053) 0.81(3)
Model A 0.221704) 0.1082) 1.362) 0.97q11) 2.042) 1.0344) 0.6333)
Ising 0.2216581) 1.03713) 0.63Q1)
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FIG. 5. Time evolution of the staggered magnetization rfar FIG. 7. The second moment &t in log-log scale. For solid
=0.2 in log-log scale. For solid line is 0.2405, 0.2410, 0.2415, lines, m¢=0.2 and 0.4(from above. The dashed line is fom
and 0.2420(from below. The dashed line corresponds k. =0.0.

=0.24153(12).

val [tic,400], one can determinK. and the critical expo-
The results in the last subsection also show that the differnent . Now we have data for fouK’s and therefore have
ence of thes&’s should be around half a percentl¢f or  the choices to interpolate the staggered magnetization with
less. three or fourK’s. ForK,, both yield the same values within

We perform simulations fom,=0.2 and 0.4. Form,  errors. With fourK’s, we obtainK,=0.24153(12) formg
=0.2 we obtain data foK=0.2405, 0.2410, 0.2415, and =0.2 andK.=0.33230(20) forms= 0.4 with t,,;=20. The
0.2420, which are shown in Fig. 5 with solid linéom  corresponding curves are shown in Figs. 5 and 6 with dashed
below) in log-log scale. Formi=0.4 we obtain data for lines. Forms=0.4, K is very stable for different choices
K=0.3310, 0.3320, 0.3330, and 0.3340, which are shown if t,,.. Form¢=0.2, K, increases slightly when we take
Fig. 6 with solid lines(from below in log-log scale. The biggert,,.. The reason is that our maximum updating times
lattice size isL=128 and 2500 samples of the initial con- are not long enough. After carefully analyzing the data and
figurations are used for averaging. looking at the curves in the figure, we are convinced that

Following the procedure in the last subsection, searchind(.=0.24153(12) is the most reasonable.
for a curve with the best power law behavior in a time inter-  In Fig. 4,9,M(t,7)|,—¢ is displayed with dashed lines for

m;=0.2 and 0.4from above. The results are obtained with
0.03 . four K’s. For mg=0.4, the resulting exponentis bad with
threeK’s. The reason is cleakK, is betweerkK =0.3320 and
mg = 0.4 0.3330. If we choose only thrd€’s, we have some system-
atic errors in interpolation.

With K. in hand, we perform simulations fon,=0.0 and
measure the second moment and the autocorrelation. A lat-
tice sizeL=64 is used and the number of samples of initial
configuration for averaging is 7500. In Fig. 7, the second
moment is displayed in log-log scale with solid lines for
mg= 0.2 andm;= 0.4 (from above. For comparison, the sec-
ond moment fomg=0.0 is also plotted with a dashed line in
the figure. Apparently, all three curves are parallel to each
other. The exponeny is independent ofmg. In Fig. 8, the
autocorrelation is displayed in log-log scale with solid lines
for mg=0.2 andms=0.4 (from below and with a dashed
. line for mg=0.0. In all the relevant figures for nonzeny,,

10 100 good power law behavior is observed.
t In Table I, all the exponents are summarized. Within the

FIG. 6. Time evolution of the staggered magnetizationrfgr ~ Statistical errors, the static exponent/2 is independent of
=0.4 in log-log scale. For solid linek is 0.3310, 0.3320, 0.333, Ms. The values also coincide well with those obtained from
and 0.3340(from below. The dashed line corresponds kK, dynamics of model A and measured in equilibrium for the
=0.33230(20). standard Ising model. The static exponerfor mg=0.2 and

M(t)

0.02 |
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behavior for nonzerong. However, with our data we should
conclude thatd depends on the value of the nonzem,
even though there may be still some uncontrolled systematic
errors. This point is different from the* theory.

AQt)

107 N ] IV. CONCLUDING REMARKS

AN We have reported our Monte Carlo simulations of short-
RN time critical dynamics for the three-dimensional antiferro-
magnetic Ising model with a globally conserved magnetiza-
tion (not an order parameter The power law scaling
behavior has been observed for the staggered magnetization
(the order parametgrits second moment and the autocorre-
lation. All dynamic and static critical exponents are deter-
mined. For a conserved magnetizatiog= 0.0, all the expo-
nents are the same as those of model A. For a nonzgro
10 t 100 the static exponents behave qualitatively the same as those of
the ¢* theory coupling to a conserved currgdtl]. How-
FIG. 8. The autocorrelation d{c in |Og-|Og scale. For solid ever, the dynamic exponents are somewhat different. The
lines, m;=0.2 and 0.4(from below. The dashed line is foms  reason might be that the magnetization is not locally but only
=0.0. globally conserved. Therefore, it is interesting to study the

. dynamics, with a locally conserved order parameter or non-
0.4 are 0.82(8) and 0.83), respectively. Even though the e harameter: in a fiip, we exchange two spins in a local

first value carries a relatively big error, they are clearly dif- : -

ferent from »v=0.64(2) for mg=0.0 and those measured [:t‘ct];g;eéi;:? size of which must be much smaller than the
from dynamics of model A and in equilibrium. However, Note added in proofP. Sen brought two relevant refer-
is independent of the value of the nonzeng. These results o ces to the attention of the autfai,48.

are consistent with the theoretical calculations based ¢f a '
theory coupling to a conserved currgaAtl]. With our accu-
racy, we cannot detect any dependence of the dynamic ex-
ponentz onmg. This differs from thep* theory in Ref[41].

The exponenty is 0.129(5) and 0.148(4) fan,=0.2 and B.Z. deeply thanks K. Oerding for suggesting the topic
0.4, respectively. These two values are obviously differentind inspiring discussions. This work was supported in part
from §=0.108(5) form,=0.0, and show nontrivial dynamic by the DFG, Grant Nos. TR 300/3-1 and Schu 95/9-2.
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