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Monte Carlo simulations of short-time critical dynamics with a conserved quantity
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With Monte Carlo simulations, we investigate short-time critical dynamics of the three-dimensional antifer-
romagnetic Ising model with a globally conserved magnetizationms ~not the order parameter!. From the power
law behavior of the staggered magnetization~the order parameter!, its second moment and the autocorrelation,
we determine all static and dynamic critical exponents as well as the critical temperature. The universality class
of ms50 is the same as that without a conserved quantity, but the universality class of nonzeroms is different.
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I. INTRODUCTION

About ten years ago, in a pioneering work by Janss
Schaub, and Schmittmann, short-time universal scaling
havior of nonequilibrium critical dynamics starting from
high-temperature state was systematically explored w
renormalization group methods@1#. In a few years, extension
of the calculations to different critical dynamics was carri
out by Oerding and Janssen in a series of works@2–4#. Some
evidences for the short-time dynamic scaling were also
served in Monte Carlo simulations@5–7#. Meanwhile, it was
found that the power law decay of the magnetization star
from a completely ordered state has already emerged at
tively early times, e.g., see Ref.@8#, and it can be used to
estimate the dynamic exponentz @9,10#. In recent years
short-time critical dynamics has been systematically inve
gated with Monte Carlo simulations@11–15#. Simulations
have extended from regular classical spin models@14,16–19#
to statistical systems with quenched disorder@20–22#, quan-
tum spin systems@23#, lattice gauge theories@24#, the hard-
disk model@25,26#, and dynamic systems without detaile
balance@27–31#. The references given here are only a part
recent ones and not complete. A relatively complete list
the relevant references before 1998 can be found in a re
review, Ref.@14#. All numerical and analytical results con
firm that there exists a rather general dynamic scaling fo
in critical dynamic systems already in the short-time regi
of dynamic evolution.

Traditionally, it is believed that the short-time behavior
dynamic systems depends essentially on microscopic de
To understand short-time universal behavior, one should
tinguish two different time scales, the macroscopic and
croscopic time scales. The short-time dynamic scaling fo
emerges only after a time scaletmic , which is sufficiently
large in microscopic sense, but still very small in mac
scopic sense.tmic is a time that the system needs to swe
away the effect of microscopic details. In Monte Carlo sim
lations, for example, if a sweep over all spins on a lattice
considered to be a microscopic time unit,tmic is usually the
order of 10 to 100 Monte Carlo time steps@14#. For the
simple Ising and Potts models with only nearest neigh
1063-651X/2001/63~6!/066130~8!/$20.00 63 0661
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interactions, sometimestmic is negligibly small ~e.g., one
Monte Carlo time step or two!. Compared with typical mac-
roscopic time scales characterized byt2nz or Lz around the
critical point, tmic is indeed very small.

The physical origin of the short-time dynamic scaling
the divergent correlation time near a critical point. The
vergent correlation time induces a memory effect, and
memory effect can be described by a scaling form. W
does this scaling form look similar to? As pointed out
Janssen, Schaub, and Schmittmann@1#, one should introduce
new critical exponents to describe the dependence of
scaling behavior on the macroscopic initial conditions. Ac
ally, for arbitrary initial conditions even a characterist
function is needed@32,33#. Furthermore, to describe the sca
ing behavior of some special dynamic observables, we a
have to introduce new exponents, for example, the per
tence exponent@34,35#.

The short-time dynamic scaling form is not only conce
tually interesting but also practically important. It provide
new techniques for the measurements of both dynamic
static critical exponents as well as the critical temperatu
for a review, see Ref.@14#. Since the measurements are ca
ried out in the short-time regime of dynamic evolution, t
dynamic approach does not suffer from critical slowi
down.1 Averaging is over both initial configurations and th
random forces. This is very different from the time averagi
in the measurements in equilibrium. Compared with tho
nonlocal methods which were invented to overcome the c
cal slowing down in Monte Carlo simulations in equilibrium
e.g., the cluster algorithms, the dynamic approach does s
the original local dynamics and can be applied to disorde
systems.

1In the literature, sometimes it is stated that the short-time
namic approach caneliminate critical slowing down. Rigorously
speaking, this statement is not correct. Critical slowing down
ways exists, at least for local dynamics, and it is the physical or
of the dynamic scaling. But in the short-time dynamic approach
do not have the problem of generating independent configurati
Therefore, we do not suffer from critical slowing down.
©2001 The American Physical Society30-1
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In fact, the dynamic scaling in nonequilibrium critical dy
namics is not an exclusive phenomenon in the world.
many other nonequilibrium dynamic processes, universa
quasiuniversal scaling behavior has also been observed
example is phase ordering dynamics@36#. In this case, a rea
equilibrium state and a macroscopic time scale such ast2nz

does not exist. Therefore, ‘‘short-time’’ is not addressed. A
other example is aging in complex systems such as gla
and spin glasses. Aging is just a kind of scaling or qua
scaling. Dynamic scaling behavior around a spin glass tr
sition @5,37–39,21# is very similar to that around a standa
critical point. For example, the experimental measureme
of the remanent magnetization in spin glasses support
only the power law scaling behavior but also the scal
relations between the exponents@40,21#.

After such a slightly lengthy review, we come to what w
are going to do in this paper. Even though renormalizat
group calculations have been extended to different crit
dynamics, up to now, Monte Carlo simulations have be
limited to dynamics of model A@41#. Actually, due to severe
critical slowing down, Monte Carlo simulations for long
time behavior of critical dynamics beyond model A are a
in the preliminary stage. The short-time dynamic approa
provides powerful methods for numerical measurements
not only dynamic exponents, but also static exponents
well as the critical temperature. Simulations of dynamic s
tems beyond model A in equilibrium are usually difficu
Therefore, it is important to investigate short-time scali
behavior of these dynamic systems with Monte Carlo me
ods.

Dynamics of model A is a kind of relaxational dynami
without relevant conserved quantities@41#. If we consider
only dynamicrelaxational processes, dynamics with differ
ent relevant conserved quantities is classified into mode
C, and D. In this paper, taking the three-dimensional anti
romagnetic Ising model as an example with Monte Ca
methods, we study dynamicswith a conserved quantity,
which is not an order parameter but coupling to the ord
parameter. According to Ref.@41#, this is called model C. In
the next section, we introduce the model and analyze
power law scaling behavior in the short-time regime. In S
III, we present the numerical results. Section IV contains
concluding remarks.

II. SHORT-TIME DYNAMIC SCALING

A. The model

We consider an antiferromagnetic Ising model on a thr
dimensional cubic lattice. The Hamiltonian of the model

2H/kT52K(̂
i j &

SiSj , ~1!

whereSi is an Ising spin and the sum is over nearest nei
bors. For dynamics of model A and in equilibrium, on
cubic lattice the antiferromagnetic Ising model is equival
to the ~ferromagnetic! Ising model. Now, we keep the mag
netization as a constant in dynamic evolution. Here the or
parameter isnot the magnetization but the staggered mag
06613
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tization. We will denote the magnetization byms and the
staggered magnetization byM (t). For equilibrium states, it
is expected that forms50, the universality class is the sam
as that of the standard Ising model without a conserved m
netization. For a nonzeroms , according to Ref.@41#, the
critical exponentn is different from that ofms50.0, but it
does not depend on the value of the nonzeroms . For critical
dynamics, the dynamic exponentz and the exponentu for
ms50 are the same as those of the standard Ising model
for nonzeroms they are different. Again,z and u do not
depend on the value of the nonzeroms . These conclusions
are drawn from renormalization group calculations based
the f4 theory coupling to a conserved current@41,2#. It is
interesting to compare these results with Monte Carlo sim
lations.

In this paper we study only dynamic relaxation starti
from disorderedstates with a zero or small initial staggere
magnetizationm0. We measure how the staggered magne
zation and its second moment as well as the autocorrela
evolve in the dynamic process. The heat-bath algorithm
used in simulations. In order to keepms as a constant, in a
flip we simply exchange the values oftwo spins. Here we
should point out that if our model is not the antiferroma
netic but the ferromagnetic Ising model, the~conserved!
magnetizationms is the order parameter and then the dyna
ics for ms50 belongs to model B@41#.

In dynamics without any relevant conserved quantiti
i.e., dynamics of model A, updating schemes are irrelevan
the sense of universality. Different updating schemes lea
the same critical exponents, either in an equilibrium o
nonequilibrium state. However, for dynamics with releva
conserved quantities, it is different, at least for nonequil
rium short-time behavior. In a recent work by one of t
authors@42#, for example, the Monte Carlo dynamics with
conserved order parameter for the two-dimensional Is
model is investigated. It is found that if in a flip we exchan
the values of twoneighboringspins, the dynamics is very
slow. However, if we release the condition such that
order parameter is not locally conserved but only globa
conserved~for example, in a flip we exchange the values
two randomly separated spins!, the dynamic exponent is
much smaller. For the dynamics studied in this paper, i
with a conserved quantity which is not the order parame
the situation is somewhat similar. If in a flip we exchange t
values of two neighboring spins, dynamic evolution is re
tively slow. Therefore, as a first approach we decided to k
the magnetizationms only globally conserved. In a flip we
exchange the values of two randomly separated spins. Ex
for the updating schemes, all computational techniq
adopted here are the same as those in the simulation
model A @14#.

B. Short-time dynamic scaling

For critical dynamic systems, traditionally it is believe
that universal scaling behavior exists only in the long-tim
regime of dynamic evolution. However, in recent years it
discovered that starting frommacroscopicinitial states, uni-
0-2
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versal scaling behavior emerges already in the macrosc
short-time regime of dynamic processes after a microsco
time scaletmic @1,5,6,11,12,14#. A typical example is that a
magnetic system initially in a high-temperature state with
small initial order parameterm0, is suddenly quenched to th
critical temperatureTc or nearby~without external magnetic
field! and then released to dynamic evolution of model
@41#. A generalized dynamic scaling form can be writt
down, for example, for thekth moment of the order param
eter

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!.
~2!

Heret is the time variable,t is the reduced temperature, an
L is the lattice size.b and n are standard static exponen
and z is the dynamic exponent. It is important that a ne
independent exponentx0 is introduced to describe the scalin
behavior of the initial order parameterm0. If the scaling
form above is valid, all relevant exponents can be extrac
from the short-time behavior of relevant observables.

For the dynamic system with a conserved quantity d
cussed in the last subsection, we assume that a scaling
such as Eq.~2! also holds. In this case,t5(K2Kc)/Kc and
Kc depends on the conserved magnetizationms , i.e., there is
a critical lineKc5Kc(ms). In principle, there are two poss
bilities for the critical exponents. In the case of strong u
versality, the value of an exponent for nonzeroms can be
different from that for zeroms , but does not depend on th
value of the nonzeroms . In the case of weak universality, a
exponent may vary its value continuously along a criti
line. For thef4 theory coupling to a conserved current
Ref. @41#, it is the case of strong universality.

Neglecting the finite size effect and noting thatm0 is
small, we expand the right hand side of Eq.~2! and take only
the first nonzero~linear! term under the condition of a sma
t. At the initial stage of time evolution, the staggered ma
netization around the critical temperature behaves as

M ~ t,t,m0!;m0tuF~ t1/nzt!, u5~x02b/n!/z. ~3!

At the exact critical pointt50, M (t) obeys a power law
;tu. Numerical results and analytical calculations have
vealed that the exponentu is positive for almost all systems
i.e., the order parameter undergoesan initial increase. This
makes the short-time behavior very prominent. The phys
mechanism for this increase has not been very clear. At l
the mean-field effect or symmetry breaking is not very r
evant. Slightly away from the critical point, the power la
behavior is modified by the scaling functionF(t1/nzt). This
fact allows us to locate the critical temperature and me
while to measure the critical exponentu.

Differentiation of Eq.~3! leads to

]tM ~ t,t,m0!ut505m0tcd]t8F~t8!ut850 , cd51/nz1u.
~4!

From this power law behavior, one can determine the crit
exponent 1/nz.
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Taking into account that the nonequilibrium spatial cor
lation length (;t1/z) is small at the initial stage of time evo
lution, from Eq.~2! it can be derived that the second mome
at Tc subjects to a finite size scaling

M (2)~ t,L !;L2dty, y5~d22b/n!/z. ~5!

For simplicity, here we have setm050. Another interesting
dynamic observable is the autocorrelation

A~ t ![
1

Ld K (i
Si~0!Si~ t !L . ~6!

At the critical temperatureTc , A(t) decays by a power law
@43#

A~ t !;t2l, l5
d

z
2u. ~7!

It is interesting that even though we have setm050, u ~i.e.,
x0) still enters the autocorrelation. This is becausex0 is ac-
tually the scaling dimension of thelocal order parameter.

From Eqs.~5! and ~7!, we are able to estimate the stat
exponentb/n and the dynamic exponentz. Then we com-
plete the measurements of all the exponents and the cri
temperature. For details of the above scaling analysis an
more systematic extension, readers are referred to R
@1,43# and the recent review article Ref.@14#.

III. MONTE CARLO SIMULATIONS

A. msÄ0

For the antiferromagnetic Ising model, in equilibrium th
averaged magnetization is zero. If we notice that the or
parameter is the staggered magnetization, the thermo
namic fluctuation of the magnetization goes to zero in
thermodynamic limit~infinite volume!. In nonequilibrium
dynamic processes without any conserved quantities, if
starts from initial states with a zero magnetizationms , the
magnetization will remain zero. This is the case for us
macroscopic initial states, e.g., the high-temperature
low-temperature states. The fluctuation of the magnetiza
in the dynamic processes is also zero in thermodyna
limit. Therefore, one expects that the equilibrium state of
dynamic process with a conserved magnetizationms50 is in
a same universality class of the model without a conser
quantity, and so is the dynamic universality class as w
The critical temperature is also not changed.

We perform simulations forms50 in order to confirm the
above expectation and to demonstrate our computatio
techniques. The heat-bath algorithm is adopted in simu
tions since it is faster than the Metropolis algorithm in t
short-time regime. Lattice sizes areL564 and 128. Within
our maximum updating times, no finite size effects are o
served. We remind the readers here that it is an advantag
the short-time dynamic approach that the finite size effe
are easily controlled due to the small nonequilibrium spa
correlation length (;t1/z).
0-3
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The critical temperature has been measured rather a
rately in simulations in equilibrium~for the system without a
conserved quantity!. However, we also present data to det
mine it from short-time dynamics. With the short-time d
namic approach, in principle, any observables which are s
sitive to the temperature around the critical regime can
used for the determination of the critical temperature.

In Fig. 1, time evolution of the staggered magnetizat
M (t) is displayed with solid lines in log-log scale. The la
tice size isL5128 and 2500 samples of initial configuratio
have been used for averaging. In order to see the pos
‘‘finite m0 effects,’’ we have performed the simulations wi
m050.01 and 0.02. The coupling constantK is 0.22065,
0.22165, and 0.22265~from below! for m050.01, and
0.22115, 0.22165, and 0.22215 form050.02. In principle,
the closerK ’s are used, the more accurateKc and the critical
exponent 1/nz can be obtained. However, we suffer fro
large statistical fluctuation if theK ’s are too close to each
other. We use differentK ’s for m050.01 andm050.02 just
to study the possible systematic errors.

To make use of Eq.~3! to locate the critical point, we firs
interpolateM (t) quadratically to anyK around the three
simulated ones, then search for aK which gives the bes
power law behavior for the curve. ThisK is Kc . The two
dashed lines in Fig. 1 are the curves with the best power
behavior for m050.01 andm050.02. The corresponding
Kc’s areKc50.22169(9) and 0.22163(5) form050.01 and
m050.02, respectively. These two values are consistent w
each other and in agreement with that of the Ising mo
measured in equilibrium~without any conserved quantity!,
which is reported to be around 0.22165@44,45#. We perform
our measurements in a time interval@ tmic,400#. The results
are rather stable when we taketmic bigger than 10.

With Kc in hand, we measure the critical exponentu
50.108(5) and 0.100(5) form050.01 andm050.02. They
are consistent withu50.104(3) in Ref. @13# and u

FIG. 1. Time evolution of the staggered magnetization displa
in log-log scale. For solid lines,K is 0.22065, 0.22165, and 0.2226
~from below! for m050.01, and K is 0.22115, 0.22165, and
0.22215 for m050.02. Dashed lines correspond toKc

50.22169(9) and 0.22163(5) form050.01 andm050.02.
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50.108(2) in Ref.@46# for the Ising model without a con
served quantity. Rigorously speaking, the exponentu is de-
fined in the limit ofm050. We should extrapolateu to m0
50. However, since here there are some statistical err
and especially the errors induced by the errors of the crit
point Kc’s, it is not meaningful to do so. To reduce the erro
induced byKc , we could takeKc50.22165 as input. Then
we obtainu50.106(6) by extrapolating the results tom0
50. In this paper, we simply consideru50.108(5) mea-
sured fromm050.01 as our final value ofu.

In Fig. 2, time evolution of the second moment of th
staggered magnetization is displayed with solid lines in lo
log scale. Here the initial staggered magnetizationm0 has
been set to zero. From below,K50.22065, 0.22165, and
0.22265. The lattice size isL564 and the number of sample
for averaging is 3200. Extra simulations forL5128 show
that the finite size effect forL564 is already negligibly
small. From the figure, we see that the second momen
apparently less sensitive toK, compared with the staggere
magnetization itself. However, we still can locate the critic
Kc from the data. Measuring in a time interval@ tmic
520,700#, Kc50.22164(22). The curve corresponding
Kc is shown by a dashed line in the figure. The error ofKc
here is bigger than that from the staggered magnetization
reduce the error, simply increasing the samples for averag
is not enough, one must have longer maximum updat
times and therefore larger lattices. These need much C
times since the second moment is not self-averaging. To
timate the exponenty5(d22b/n)/z, for simplicity, we take
Kc50.22165 as input. The result isy50.965(11).

In the simulations for Fig. 2, we have also measured
autocorrelation functionA(t). The results are shown in Fig
3. From below,K50.22065, 0.22165, and 0.22265. It is im
possible to locate the critical point from the autocorrelatio
We measure the exponentl51.36(3) atKc50.22165 in a
time interval@20,100#. When t is bigger than 100, the fluc
tuation becomes large.

d
FIG. 2. The second moment in log-log scale. For solid linesK

is 0.22065, 0.22165, and 0.22265~from below!. The dashed line
corresponds toKc50.22164(22).
0-4
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In order to determine the critical exponentn, we need
]t M (t,t)ut50. From the data for Fig. 1, we can calcula
this derivative approximately. The results are shown in Fig
with solid lines in log-log scale. From below, the initial sta
gered magnetization ism050.01 and 0.02. It is known tha
the power law behavior of the derivative ofM (t) in shorter
times is less clean than that ofM (t) itself @14#. Therefore,
we measure the slopes in a time interval@70,400# and obtain
cd51/nz1u50.867(10) and 0.901(22) form050.01 and
0.02, respectively. The value fromm050.01 is more reliable.

In Table I, we list all the exponents we have measur
Taking the exponentu as input, froml we estimate the
dynamic exponentz. Then fromy and cd we calculate the
exponents 2b/n andn. For comparison, available results fo
dynamics without a conserved quantity@46#, i.e., the so-
called model A dynamics, are also given, where the criti
point Kc and the exponentn are measured from another d
namic process starting from a completely ordered st
Within statistical errors, all the exponents for dynamics w
and without a conserved quantity agree with each other w
The static exponents andKc are also consistent with those o
the standard Ising model measured from simulations in e
librium with cluster algorithms@45#. Here we should make a
comment. Even for dynamics of model A, the static exp
nents andKc measured from the short-time dynamics are s
not as accurate as those obtained with the cluster algorith

FIG. 3. The autocorrelation in log-log scale.K is 0.22065,
0.22165, and 0.22265~from below!.
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One reason is that the best effort for the short-time dyna
approach has not been made. Another reason is that in
short-time dynamic approach we have to measure both
static and dynamic exponents together. It makes the w
more difficult than measuring only the static exponen
However, it is clear if we are interested in both static a
dynamic properties, the short-time dynamic approach is v
efficient. The cluster algorithms are nonlocal and change
dynamic universality class. On the other hand, the clus
algorithms cannot straightforwardly apply to any system
e.g., the systems with quenched randomness and la
gauge theories.

B. msÄ” 0

Encouraged by the success forms50.0, we proceed to
ms5” 0. The results in the last subsection show that the
tices sizesL564 and 128 are sufficient for our maximum
updating times. The finitem0 effect for m050.01 is already
invisible within the statistical errors. Therefore, in this su
section we will not systematically study the finite size a
finite m0 effects. However we have also performed som
extra calculations to confirm the results presented. To loc
the critical pointKc and estimate the exponentn, we need
data for severalK ’s in the neighborhood of the critical point

FIG. 4. The derivative]t M (t,t)ut50 in log-log scale. Solid
lines are forms50.0 and from below,m050.01 and 0.02. Dashed
lines are forms50.2 and 0.4~from above! with m050.01.
ng

TABLE I. Critical exponents measured for different conserved magnetizationms’s. The values for dy-

namics of model A are taken from Ref.@46#. Under the item ’‘Ising’’ are the values for the standard Isi
model in equilibrium@45#.

ms Kc u l y cd z 2b/n n

0.0 0.22169~9! 0.108~5! 1.36~3! 0.965~11! 0.867~10! 2.04~4! 1.03~4! 0.64~2!

0.2 0.24153~12! 0.129~5! 1.34~2! 0.954~4! 0.725~70! 2.04~3! 1.05~3! 0.82~8!

0.4 0.33230~20! 0.148~4! 1.31~1! 0.945~8! 0.748~20! 2.06~2! 1.05~3! 0.81~3!

Model A 0.22170~4! 0.108~2! 1.36~2! 0.970~11! 2.04~2! 1.034~4! 0.633~3!

Ising 0.221655~1! 1.037~3! 0.630~1!
0-5
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The results in the last subsection also show that the dif
ence of theseK ’s should be around half a percent ofKc or
less.

We perform simulations forms50.2 and 0.4. Forms
50.2 we obtain data forK50.2405, 0.2410, 0.2415, an
0.2420, which are shown in Fig. 5 with solid lines~from
below! in log-log scale. Forms50.4 we obtain data for
K50.3310, 0.3320, 0.3330, and 0.3340, which are show
Fig. 6 with solid lines~from below! in log-log scale. The
lattice size isL5128 and 2500 samples of the initial co
figurations are used for averaging.

Following the procedure in the last subsection, search
for a curve with the best power law behavior in a time int

FIG. 5. Time evolution of the staggered magnetization forms

50.2 in log-log scale. For solid lines,K is 0.2405, 0.2410, 0.2415
and 0.2420~from below!. The dashed line corresponds toKc

50.24153(12).

FIG. 6. Time evolution of the staggered magnetization forms

50.4 in log-log scale. For solid lines,K is 0.3310, 0.3320, 0.333
and 0.3340~from below!. The dashed line corresponds toKc

50.33230(20).
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val @ tmic ,400#, one can determineKc and the critical expo-
nent u. Now we have data for fourK ’s and therefore have
the choices to interpolate the staggered magnetization
three or fourK ’s. For Kc , both yield the same values withi
errors. With fourK ’s, we obtainKc50.24153(12) forms
50.2 andKc50.33230(20) forms50.4 with tmic520. The
corresponding curves are shown in Figs. 5 and 6 with das
lines. Forms50.4, Kc is very stable for different choice
of tmic . For ms50.2, Kc increases slightly when we tak
biggertmic . The reason is that our maximum updating tim
are not long enough. After carefully analyzing the data a
looking at the curves in the figure, we are convinced t
Kc50.24153(12) is the most reasonable.

In Fig. 4,]tM (t,t)ut50 is displayed with dashed lines fo
ms50.2 and 0.4~from above!. The results are obtained wit
four K ’s. For ms50.4, the resulting exponentn is bad with
threeK ’s. The reason is clear.Kc is betweenK50.3320 and
0.3330. If we choose only threeK ’s, we have some system
atic errors in interpolation.

With Kc in hand, we perform simulations form050.0 and
measure the second moment and the autocorrelation. A
tice sizeL564 is used and the number of samples of init
configuration for averaging is 7500. In Fig. 7, the seco
moment is displayed in log-log scale with solid lines f
ms50.2 andms50.4 ~from above!. For comparison, the sec
ond moment forms50.0 is also plotted with a dashed line i
the figure. Apparently, all three curves are parallel to ea
other. The exponenty is independent ofms . In Fig. 8, the
autocorrelation is displayed in log-log scale with solid lin
for ms50.2 andms50.4 ~from below! and with a dashed
line for ms50.0. In all the relevant figures for nonzeroms ,
good power law behavior is observed.

In Table I, all the exponents are summarized. Within t
statistical errors, the static exponent 2b/n is independent of
ms . The values also coincide well with those obtained fro
dynamics of model A and measured in equilibrium for t
standard Ising model. The static exponentn for ms50.2 and

FIG. 7. The second moment atKc in log-log scale. For solid
lines, ms50.2 and 0.4~from above!. The dashed line is forms

50.0.
0-6
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0.4 are 0.82(8) and 0.81(3), respectively. Even though th
first value carries a relatively big error, they are clearly d
ferent from n50.64(2) for ms50.0 and those measure
from dynamics of model A and in equilibrium. However,n
is independent of the value of the nonzeroms . These results
are consistent with the theoretical calculations based on af4

theory coupling to a conserved current@41#. With our accu-
racy, we cannot detect any dependence of the dynamic
ponentz on ms . This differs from thef4 theory in Ref.@41#.
The exponentu is 0.129(5) and 0.148(4) forms50.2 and
0.4, respectively. These two values are obviously differ
from u50.108(5) forms50.0, and show nontrivial dynami

FIG. 8. The autocorrelation atKc in log-log scale. For solid
lines, ms50.2 and 0.4~from below!. The dashed line is forms

50.0.
. B

.

i,

06613
-

x-

t

behavior for nonzeroms . However, with our data we shoul
conclude thatu depends on the value of the nonzeroms ,
even though there may be still some uncontrolled system
errors. This point is different from thef4 theory.

IV. CONCLUDING REMARKS

We have reported our Monte Carlo simulations of sho
time critical dynamics for the three-dimensional antiferr
magnetic Ising model with a globally conserved magneti
tion ~not an order parameter!. The power law scaling
behavior has been observed for the staggered magnetiz
~the order parameter!, its second moment and the autocorr
lation. All dynamic and static critical exponents are det
mined. For a conserved magnetizationms50.0, all the expo-
nents are the same as those of model A. For a nonzeroms ,
the static exponents behave qualitatively the same as tho
the f4 theory coupling to a conserved current@41#. How-
ever, the dynamic exponents are somewhat different.
reason might be that the magnetization is not locally but o
globally conserved. Therefore, it is interesting to study
dynamics, with a locally conserved order parameter or n
order parameter: in a flip, we exchange two spins in a lo
regime, the size of which must be much smaller than
lattice size.

Note added in proof.P. Sen brought two relevant refe
ences to the attention of the author@47,48#.
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